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Abstract. Dispersion theory for harmonic generation susceptibilities is considered with the aid of complex
analysis. New sum rules are obtained for the powers of arbitrary-order harmonic generation susceptibilities.
The theory is based on the holomorphic properties and asymptotic behaviour of nonlinear susceptibilities.
The present sum rules are reportedly important in nonlinear optical spectra analysis.

PACS. 42.65.-k Nonlinear optics – 42.65.An Optical susceptibility, hyperpolarizability –
42.65.Ky Harmonic generation, frequency conversion

1 Introduction

The Kramers-Kronig (K-K) relations, which relate the real
and imaginary parts of linear optical susceptibility [1,2],
are one of the most powerful tools of the optical spec-
troscopy that conventionally allow one to calculate the
refractive index of a medium from the measured absorp-
tion spectrum and vice versa. The universal character of
the K-K relations reflects the fact that they arise from
causality, one of the most fundamental principle of physics
stating the direction of the time arrow. Causality, in par-
ticular, ensures the holomorphicity of the linear response
functions in the upper half of the complex angular fre-
quency plane where they obey the Cauchy-Riemann equa-
tions [3]. This holomorphicity, in particular, allows one to
derive useful constraints on the response functions that
are referred to as the sum rules [4] and – along with mi-
croscopic theories – gives new insight on the theory of lin-
ear and nonlinear optical response. Physically, sum rules
can be considered as restatements of causality and sum
rules allow one to check the consistency of experimental
data and theoretical models of the optical properties of
the medium [5,6].

Recent advances in laser technology and the rapid de-
velopment of nonlinear optical spectroscopy have stimu-
lated search for analog K-K relations (called also disper-
sion relations) for nonlinear optical susceptibilities [7–9].
It has been shown [10] that a harmonic wave genera-
tion is described by the nonlinear susceptibility, which is
a holomorphic function in the upper half plane similar
to the linear susceptibility. Holomorphic functions with
proper asymptotic behaviour satisfy the dispersion rela-
tions, which have been experimentally demonstrated for
third-harmonic generation in polysilanes [11]. Universal
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constraints for the third-order susceptibility have been de-
rived by Rapapa and Bassani [12] that are in good agree-
ment with experimental data from third harmonic gener-
ation experiments. The works of Peiponen [2,13,14] have
stimulated the study of the relevant sum rules for nonlin-
ear optical susceptibilities that have been derived e.g. for
many-electron systems [15], atomic hydrogen [16], and the
anharmonic oscillator [17]. Bassani and Lucarini [18] have
derived general properties and sum rules for higher order
harmonic generation susceptibilities. Fast convergence of
the nonlinear susceptibilities at high frequencies is of cru-
cial importance for experimental data analysis. Since the
convergence rate increases with the order of the nonlinear
process, potential applicability of the sum rules for testing
of measured spectra increases with the order of the nonlin-
ear process. Intensity of the signal itself usually decreases
rapidly with the increase of the order of the nonlinear
process. This makes it important to search for sum rules,
which have faster convergence even at relatively low order
of the nonlinear optical process.

Sum rules with low convergence require the knowledge
of the spectrum over the complete spectral range. How-
ever, it should be pointed out that sum rules with faster
convergence are more useful in experimental data anal-
ysis with an unavoidable finite spectrum. Hence, the er-
rors of numerical calculations of sum rules caused by a
finite spectrum can be reduced. For finite spectra, there
are alternative and practical methods for data inversion.
These include, for instance, multiply subtractive K-K rela-
tions (MSKK) [19–21] and the maximum entropy method
(MEM) [22]. Sum rules presented in this paper can then
be used to check the consistency of the inverted data ob-
tained using either MSKK or MEM. Vartiainen et al. [23]
showed the applicability of sum rules in nonlinear opti-
cal spectroscopy by testing experimental data in order
to determine the background susceptibility of coherent
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anti-Stokes Raman scattering of the nitrogen Q-branch
measured over a finite spectral range.

In this theoretical study we derive dispersion relations
and sum rules for the powers of nonlinear susceptibilities
by generalizing the results of King [24] and Bassani and
Lucarini [18]. The paper is organized as follows. Section 2
deals with the asymptotic behaviour of the arbitrary-
order harmonic frequency generation susceptibilities. In
Section 3 we present an extension of King’s method for
nonlinear susceptibilities and derive, as far as we know,
new sum rules for harmonic generation susceptibilities
that are not based on the K-K analysis. In Section 4 we
give generalized results for K-K type dispersion relations
and sum rules for the powers of arbitrary-order harmonic
generation susceptibilities. In Section 5 we summarize our
results. Finally, in Appendices A and B we present the
mathematical background for the derivation of sum rules.

2 Holomorphicity and asymptotic behaviour
of harmonic generation susceptibilities

Let us consider the polarization of an insulating medium.
In this paper the spatial dispersion is not taken into ac-
count. The most general way to express the polarization
of the medium P(t) is

Pi(t) =
∫ ∞

0

G
(1)
ij (t1)Ej(t− t1)dt1

+
∫∫ ∞

0

G
(2)
ijk(t1, t2)Ej(t− t1)Ek(t− t1 − t2)dt2dt1

+
∫∫∫ ∞

0

G
(3)
ijkl(t1, t2, t3)Ej(t− t1)Ek(t− t1 − t2)

× El(t− t1 − t2 − t3)dt3dt2dt1 + · · · .
(1)

Here G(1)(t1) is a linear response function and G(2)(t1, t2)
and G(3)(t1, t2, t3) are higher order response functions
with subscripts labelling the Cartesian coordinates x, y
and z. A Fourier transform of the linear response function
G

(1)
ij (t) gives the linear susceptibility in the frequency do-

main

χ
(1)
ij (ω) =

∫ ∞

0

G
(1)
ij (t) exp(iωt)dt, (2)

where ω is the angular frequency and G(1)
ij (t) depends on

the dielectric properties of an insulating medium. For the
sake of simplicity, we drop the subscripts from the no-
tation. The lower bound of the integration follows from
the principle of causality since the response of the system
cannot precede the interference that causes it [20]. Hence,
G(1)(t) is a real function and we obtain that for purely
imaginary angular frequencies χ(1)(iω) is a real function.

For monochromatic plane waves with frequency ω we
have the nonlinear contribution with angular frequency
nω as follows [12]:

P (n)(nω) = ε0χ
(n)(nω)E(ω)E(ω) · · ·E(ω), (3)

where χ(n)(nω) = χ(n)(nω;ω, · · · , ω) is the nth order
harmonic generation susceptibility describing the nth
order harmonic frequency generation in the medium.
The arbitrary-order harmonic generation susceptibility
χ(n)(nω) is a Fourier transform of a general response func-
tion G(n)(t1, · · · , tn). Defining τ = t1 + t2 + · · · + tn and
τi = ti − ti+1, we have

χ(n)(nω) =
∫ ∞

0

· · ·
∫ ∞

0

G(n)(t1, t2, · · · , tn) exp(iωτ)

× exp(iωτ1) · · · exp(iωτn−1)dτn−1 · · ·dτ. (4)

The arbitrary-order susceptibility obtained from equa-
tion (4) is a holomorphic function in the upper half of
the complex angular frequency plane [10,25].

The asymptotic behaviour of the harmonic generation
susceptibilities have been studied in literature [12,18,25].
The convergence of the arbitrary-order harmonic genera-
tion susceptibility was obtained from the Kubo response
function formalism, which is of the form [25]

χ(n)(nω) =
ψ

ω2n+2
+O(ω−(2n+2)), with n = 2, 3, · · ·

(5)

where ψ depends on the model used to describe the
medium and O(ω−(2n+2)) denotes terms that converge
strictly faster than ω−(2n+2). In particular, for the basic
classical anharmonic oscillator model we have

χ(n)(nω) = ψD(nω)[D(ω)]n, (6)

where

D(ω) = (ω2
0 − ω2 − iΓω)−1. (7)

Here ω0 is the resonance angular frequency of the medium
and Γ is the oscillator dephasing time.D(ω) has two poles,
which are located in the lower half plane and are explicitly
given by ω1,2 = ±√

ω2
0 − Γ 2/4 − iΓ/2. This ensures the

holomorphicity of χ(n)(nω).

3 Extension of King’s method for harmonic
generation susceptibilities

In order to obtain sum rules for linear susceptibility
King [24] suggested to consider complex functions

f1(ω̂) =
χ(1)(ω̂)
ω̂ + iω′ ; f2(ω̂) =

χ(1)(ω̂)
ω̂ − iω′ (8)

where ω̂ is the complex angular frequency and ω′ is a real
positive frequency. The integration is carried out around
a closed semi-circle contour C containing the real axis and
the upper half of the complex angular frequency plane, as
presented in Figure 1a. There is one pole at the imaginary
axis with function f2(ω̂) and the pole is enclosed by the
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Fig. 1. Contour for derivation of (a) King’s and (b) Kramers-
Kronig type dispersion relations and sum rules (×=pole).

integration path. The contour integration can be split into
two parts as follows:

lim
|ω̂|→∞

∮
C

f(ω̂)dω̂ =
∫ ∞

−∞
f(ω)dω + lim

|ω̂|→∞

∫
A

f(ω̂)dω̂.

(9)

The integral along the arc A tends to zero when the ra-
dius (=frequency) of the circle approaches infinity, which
is guaranteed by the asymptotic fall-off of the linear sus-
ceptibility that is proportional to ω−2. Since Im{χ(1)(iω)}
is zero for all real frequencies ω, we obtain a sum rule given
by King [24] for linear susceptibility

∫ ∞

0

ωIm{χ(1)(ω)}
ω2 + ω′2 dω = ω′

∫ ∞

0

Re{χ(1)(ω)}
ω2 + ω′2 dω. (10)

In the derivation of equation (10) we have used a sym-
metry property, which can be expanded for the complex
angular frequencies and for nonlinear susceptibilities as
follows [26]:

χ(n)(−nω̂∗) =
[
χ(n)(nω̂)

]∗
, (11)

where (∗) denotes the complex conjugate. equation (11)
shows that for real angular frequencies the real part of
the arbitrary-order susceptibility is an even function and
the imaginary part an odd function.

The sum rule of equation (10) is now extended for
higher-order susceptibilities, which describe the arbitrary-
order harmonic wave generation, by considering complex
functions:

g1(ω̂) =
ω̂j [χ(n)(nω̂)]k

ω̂ + iω′ ; g2(ω̂) =
ω̂j [χ(n)(nω̂)]k

ω̂ − iω′ , (12)

where indices j and k are integers and ω′ is a real posi-
tive frequency. In the case of g2(ω̂), there is one pole at
ω̂ = iω′ in the upper half plane. The pole induces a residue
term when integrating along the contour presented in Fig-
ure 1a. In the general case, we must have a convergent inte-
gral, which can be ensured with proper choice of indices j
and k. Then we can express sum rules for the arbitrary-
order harmonic generation susceptibility, analogous to the
linear case of equation (10) as follows (for a more detailed

derivation see Appendix A):

ω′
∫ ∞

0

ωjRe
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω =

∫ ∞

0

ωj+1Im
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω j=0, 2, 4, . . . (13)

∫ ∞

0

ωj+1Re
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω =

− ω′
∫ ∞

0

ωjIm
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω j=1, 3, 5, . . . (14)

Herein, as an example, we present a new sum rule which
is analogous to the linear case and is of the form

∫ ∞

0

ωIm{χ(3)(3ω)}
ω2 + ω′2 dω = ω′

∫ ∞

0

Re{χ(3)(3ω)}
ω2 + ω′2 dω. (15)

Sum rules presented above are extensions of King’s sum
rules but for the nonlinear susceptibility.

4 Kramers-Kronig type relations
and sum rules

Causality guarantees the holomorphicity of harmonic gen-
eration susceptibility in the upper half of the complex an-
gular frequency plane [10]. Convergence of nonlinear dis-
persion relations follows from the asymtotic fall-off of the
susceptibility as shown in Section 2. In order to derive dis-
persion relations for [χ(n)(nω)]k, we consider the following
function:

f(ω̂) =
ω̂2α

[
χ(n)(nω̂)

]k

ω̂ − ω′ , (16)

where α, n, and k are integers and ω′ is a real positive
frequency. The contour for the derivation of K-K type re-
lations is presented in Figure 1b and the integration can
be split into two parts according to equation (9). Due to
a pole at a positive real frequency axis, we have to replace
the integral over the real frequency axis in equation (9)
with a Cauchy principal value integral. The convergence
of the integral along the arc obeys equation (5) and allows
us to derive k(2n+2) K-K type relations. Only the formu-
las that contain even powers of ω̂ are relevant since both
even and odd powers reduce to the same set of sum rules.
The higher powers of the harmonic generation susceptibil-
ities converge very rapidly. For the value α = k(n+1) the
integral along the arc converges to a certain purely imag-
inary value that depends on the model used to describe
the susceptibility. For even powers, the K-K type relations
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can be expressed as follows:

ω′2α−1Im
{[
χ(n)(nω′)

]k
}

= − 2
π

×P
∫ ∞

0

ω2αRe
{[
χ(n)(nω′)

]k
}

ω2 − ω′2 dω,with 0 ≤ α ≤ k(n+ 1)

(17)

ω′2αRe
{[
χ(n)(nω′)

]k
}

=
2
π

×P
∫ ∞

0

ω2α+1Im
{[
χ(n)(nω′)

]k
}

ω2 − ω′2 dω,with 0 ≤α≤ k(n+1)−1

(18)

ω′2αRe
{[
χ(n)(nω′)

]k
}

=
2
π

× P
∫ ∞

0

ω2α+1Im
{[
χ(n)(nω′)

]k
}

ω2 − ω′2 dω + ψk,with α=k(n+1)

(19)

where P denotes the Cauchy principal value. Note that
in equations (17–19) the integrals are divergent if α >
k(n + 1). As far as we know, a detailed derivation of
the constrains of the convergence of equations (17–19)
has not been presented in the literature before. There-
fore, we present a detailed calculation of the condition of
the convergence of dispersion relations involving the func-
tion f(ω̂) in Appendix B. Dispersion relations presented
above are general and not model dependent excluding
equation (19). Sum rules can be obtained from disper-
sion relations above. As an example, see Appendix B as
concerns the derivation of a sum rule equation (20).

∫ ∞

0

ω2αRe
{[
χ(n)(nω)

]k
}

dω = 0,

with 0 ≤ α ≤ k(n+ 1) − 1. (20)

∫ ∞

0

ω2α+1Im
{[
χ(n)(nω)

]k
}

dω = 0,

with 0 ≤ α ≤ k(n+ 1) − 2. (21)

∫ ∞

0

ω2α+1Im
{[
χ(n)(nω)

]k
}

dω = −π
2
ψk,

with α = k(n+ 1) − 1. (22)

The sum rules, equations (21–22), can be derived in a sim-
ilar manner as the sum rule equation (20). Note that the
generalized sum rules above reduce to the formulas given
by Bassani and Lucarini [18] in the special case k = 1.

5 Conclusions

In this paper we investigated the holomorphic properties
of the arbitrary-order harmonic generation susceptibilities
χ(n)(nω), which are responsible for the nth harmonic gen-
eration processes, and obtained a new set of sum rules for
[χ(n)(nω)]k. We showed that the asymptotic behaviour of
nonlinear susceptibilities allowed us to introduce the K-K
type dispersion relations for [χ(n)(nω)]k. With the aid of
the complex analysis, we generalized the sum rules given
by King [24] and Bassani and Lucarini [18]. The high con-
vergence of [χ(n)(nω)]k is believed to make these sum rules
an important tool in nonlinear optical spectroscopy. As a
potential application of the present sum rules, we men-
tion, for instance, sum rule tests of spectra related to en-
hanced harmonic wave generation from layered nanocom-
posites [27,28].

The author wishes to thank Prof. Kai-Erik Peiponen and
Prof. Yuri P. Svirko for help in the preparation of this
manuscript and Dr. Jouni Rättyä for discussions concern-
ing complex integration. The financial support of the Emil
Aaltonen foundation is gratefully acknowledged.

Appendix A: Derivation of extended
King’s method

The derivation of extended King’s method is based on the
complex integration along the contour presented in Fig-
ure 1a. Let us consider functions given by equation (12).
In the case of g1(ω̂), the function is holomorphic in the
upper half plane and we obtain∫ ∞

0

ωj+1Im
{
χ(n)(nω)k

}
ω2 − ω′2 dω

− ω′
∫ ∞

0

ωjRe
{
χ(n)(nω)k

}
ω2 − ω′2 dω = 0, with j=even.

(A.1)

∫ ∞

0

ωj+1Re
{
χ(n)(nω)k

}
ω2 − ω′2 dω

+ ω′
∫ ∞

0

ωjIm
{
χ(n)(nω)k

}
ω2 − ω′2 dω = 0, with j=odd.

(A.2)

In turn, g2(ω̂) has one pole at the positive imaginary axis,
which induces a residue term to dispersion relations as
follows:∫ ∞

0

ωj+1Im
{
χ(n)(nω)k

}
ω2 − ω′2 dω+ω′

∫ ∞

0

ωjRe
{
χ(n)(nω)k

}
ω2 − ω′2 dω=

πResω̂=iω′ [g2(ω̂)], with j=even. (A.3)

∫ ∞

0

ωj+1Re
{
χ(n)(nω)k

}
ω2 − ω′2 dω−ω′

∫ ∞

0

ωjIm
{
χ(n)(nω)k

}
ω2 − ω′2 dω=

πiResω̂=iω′ [g2(ω̂)], with j=odd. (A.4)
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The complex integration with the residue term of the first-
order pole can be calculated as follows:

∮
C

g2(ω̂)dω̂ = 2πig2(iω′) = 2πi(iω′)j [χ(n)(niω′)]k

=




2πiω′j [χ(n)(niω′)]k with j = 0, 4, 8, · · ·
−2πω′j [χ(n)(niω′)]k with j = 1, 5, 9, · · ·
−2πiω′j [χ(n)(niω′)]k with j = 2, 6, 10, · · ·
2πω′j [χ(n)(niω′)]k with j = 3, 7, 11, · · ·

(A.5)

Now, we can combine the results for functions g1(ω̂) and
g2(ω̂) and obtain

∫ ∞

0

ωjRe
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω =



π
2ω′

[
χ(n)(inω)

]k
j = 0

−πω′j−1

2

[
χ(n)(inω)

]k
j = 2, 6, 10, . . .

πω′j−1

2

[
χ(n)(inω)

]k
j = 4, 8, 12, . . .

(A.6)

∫ ∞

0

ωj+1Re
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω ={
−πω′j

2

[
χ(n)(inω)

]k
j = 1, 5, 9, . . .

πω′j
2

[
χ(n)(inω)

]k
j = 3, 7, 11, . . .

(A.7)

∫ ∞

0

ωj+1Im
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω =



π
2

[
χ(n)(inω)

]k
j = 0

−πω′j
2

[
χ(n)(inω)

]k
j = 2, 6, 10, . . .

πω′j
2

[
χ(n)(inω)

]k
j = 4, 8, 12, . . .

(A.8)

∫ ∞

0

ωjIm
{[
χ(n)(nω)

]k
}

ω2 + ω′2 dω ={
πω′j−1

2

[
χ(n)(inω)

]k
j = 1, 5, 9, . . .

−πω′j−1

2

[
χ(n)(inω)

]k
j = 3, 7, 11, . . .

(A.9)

We can summarize our results by combining equa-
tions (A.6–A.9) into the form of equations (13, 14) pre-
sented in Section 3.

Appendix B: Convergence of K-K type
relations

In this section we derive the convergence of dispersion
relations and sum rules. As far as we know, a detailed
derivation has not been presented in the literature before.

The convergence of dispersion relations and sum rules are
restricted by the integral along the arc A, presented in
Figure 1b. Let us consider the function

f(ω̂) =
ω̂m

[
χ(n)(nω̂)

]k

ω̂ − ω′ , (B.1)

where m, n and k are integers and ω′ is located at the
positive real axis. We consider both even and odd powers
of ω̂. Bassani and Lucarini [18] used only even powers of
ω̂ since both even and odd powers reduce to the same set
of sum rules. Nevertheless, different K-K type relations
arise for even and odd powers. By the definition of the
arbitrary-order harmonic frequency generation suscepti-
bility, we know that at high frequencies, the convergence
is proportional to ψω−(2n+2). By expressing complex an-
gular frequency in polar coordinates ω̂ = Reiϕ such that
dω̂ = Rieiϕdϕ, we have for the integral along the arc A

∫
A

ω̂m
[
χ(n)(nω̂)

]k

ω̂ − ω′ dω̂ =∫ π

0

Rmeimϕψk

[R2n+2ei(2n+2)ϕ]k(Reiϕ − ω′)
Rieiϕdϕ

= iψkRm−k(2n+2)

∫ π

0

ei[m+1−k(2n+2)]ϕ

eiϕ − ω′/R
dϕ (B.2)

The limit of the integral (B.2) at high frequencies defines
the convergence of dispersion relations. For the convergent
integral, the limit is finite when the radius R = |ω̂| of
the arc A approaches infinity. This restricts the highest
power m. For values m < 2k(n+1) the integral converges
to zero

lim
R→∞

[
iψkRm−k(2n+2)

∫ π

0

ei[m+1−k(2n+2)]ϕ

eiϕ − ω′/R
dϕ

]
= 0.

(B.3)

Higher powers than m = 2k(n+ 1) are divergent. For the
value m = 2k(n+ 1), the integral along the arc converges
to a certain purely imaginary value that depends on the
model used to describe the medium as follows:

lim
|ω̂|→∞

[∫
A

ω̂m
[
χ(n)(nω̂)

]k

ω̂ − ω′ dω̂

]
=

lim
R→∞

[
iψk

∫ π

0

eiϕ

eiϕ − ω′/R
dϕ

]
· (B.4)

Let R be large enough such that R ≥ 2ω′. Then, by
Lebesgue’s convergence theorem, the integral along the
arc A has a converging majorant

∣∣∣∣ eiϕ

eiϕ − ω′/R

∣∣∣∣ ≤ 1
1 − |ω′/R| ≤

1
1 − 1/2

= 2, (B.5)



556 The European Physical Journal B

which is a constant. In equation (B.4), we can change the
order of the integration and the limiting process as follows:

lim
R→∞

[
iψk

∫ π

0

eiϕ

eiϕ − ω′/R
dϕ

]
=

iψk

∫ π

0

[
lim

R→∞

(
eiϕ

eiϕ − ω′/R

)]
dϕ

= iψk

∫ π

0

dϕ = πiψk. (B.6)

Integration around the closed semi-circle presented in Fig-
ure 1b can be expressed as follows:

lim
|ω̂|→∞

∮
C

f(ω̂)dω̂ = πiResω̂=ω′f(ω̂)

= πiω′mRe
{[
χ(n)(nω′)

]k
}
− πω′mIm

{[
χ(n)(nω′)

]k
}
·

(B.7)

On the other hand, we have

lim
|ω̂|→∞

∮
C

f(ω̂)dω̂ = P
∫ ∞

−∞
f(ω)dω + lim

|ω̂|→∞

∫
A

f(ω̂)dω̂.

(B.8)

Negative angular frequencies are not physically reason-
able and we can reformulate the Cauchy principal value
integration with the aid of the symmetry relation equa-
tion (11). For the even integer m it holds

P
∫ ∞

−∞
f(ω)dω = 2ω′

∫ ∞

0

ωmRe
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω

+ 2i
∫ ∞

0

ωm+1Im
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω, (B.9)

and for the odd m

P
∫ ∞

−∞
f(ω)dω = 2

∫ ∞

0

ωm+1Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω

+ 2iω′
∫ ∞

0

ωmIm
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω · (B.10)

In equations (B.7–B.10), we can separate the real- and
imaginary parts. For values m ≤ 2k(n+ 1) − 1 with even
integer m, K-K type relations are of the form

ω′mRe
{[
χ(n)(nω′)

]k
}

=

2
π

P
∫ ∞

0

ωm+1Im
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω, (B.11)

ω′mIm
{[
χ(n)(nω′)

]k
}

=

− 2ω′

π
P

∫ ∞

0

ωmRe
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω, (B.12)

and for odd integers m, the corresponding equations are

ω′mRe
{[
χ(n)(nω′)

]k
}

=

2ω′

π
P

∫ ∞

0

ωmIm
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω, (B.13)

ω′mIm
{[
χ(n)(nω′)

]k
}

=

− 2
π

P
∫ ∞

0

ωm+1Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω. (B.14)

For the value m = 2k(n + 1), the imaginary part of left
hand side of equation (B.8) contains an extra term, which
is caused by the integration along the arc A and the dis-
persion relation (B.11) is transformed as follows:

ω′mRe
{[
χ(n)(nω′)

]k
}

=

2
π

P
∫ ∞

0

ωm+1Im
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω + ψk. (B.15)

Now we are able to derive sum rules for the arbitrary-
order harmonic frequency generation susceptibilities. For
example, the two highest convergent even powers of equa-
tion (B.12) are m = 2k(n+ 1) and m = 2k(n+ 1)− 2. By
inserting these values into (B.12) we obtain

ω′2k(n+1)Im
{[
χ(n)(nω′)

]k
}

=

− 2ω′

π
P

∫ ∞

0

ω2k(n+1)Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω, (B.16)

ω′2k(n+1)−2Im
{[
χ(n)(nω′)

]k
}

=

− 2ω′

π
P

∫ ∞

0

ω2k(n+1)−2Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω. (B.17)

Equation (B.17) is multiplied by ω′2, which is subtracted
from equation (B.16) and we obtain

0 = −2ω′

π
P
∫ ∞

0

(
ω2−ω′2

)
ω2k(n+1)−2Re

{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω,

(B.18)

which leads to the sum rule∫ ∞

0

ω2k(n+1)−2Re
{[
χ(n)(nω)

]k
}

dω = 0. (B.19)
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In a similar manner, we obtain for the highest convergent
odd powers m = 2k(n + 1) − 1 and m = 2k(n + 1) − 3
equations

ω′2k(n+1)−1Im
{[
χ(n)(nω′)

]k
}

=

− 2
π

P
∫ ∞

0

ω2k(n+1)Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω, (B.20)

ω′2k(n+1)−3Im
{[
χ(n)(nω′)

]k
}

=

− 2
π

P
∫ ∞

0

ω2k(n+1)−2Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω. (B.21)

Now, in turn, equation (B.21) is multiplied by ω′2 and
subtracted from equation (B.20) leading to

0 = − 2
π

P
∫ ∞

0

(ω2 − ω′2)ω2k(n+1)−2Re
{[
χ(n)(nω)

]k
}

ω2 − ω′2 dω,

(B.22)

which is of the form∫ ∞

0

ω2k(n+1)−2Re
{[
χ(n)(nω)

]k
}

dω = 0. (B.23)

We have shown that both even (B.19) and odd (B.23)
powers reduce to the same sum rule but different
K-K type dispersion relations. Sum rule given by equa-
tions (B.19, B.23) can be reduced to the form

∫ ∞

0

ω2αRe
{[
χ(n)(nω)

]k
}

dω = 0 (B.24)

with 0 ≤ α ≤ k(n+ 1) − 1. The other sum rules given by
equations (21, 22) are obtained from similar mathematical
procedures to that above.
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